If the heat exchanger has a complex structure, for example multiple passage of tubes in multiple shells, the method requires altering LMDT for an appropriate correction factor F

which is computed as a function of the 2 parameters

The Number of Transfer Units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially counter current exchangers) when there is insufficient information to calculate the Log-Mean Temperature Difference (LMTD).

When the fluid inlet and outlet temperatures are specified or can be determined by simple mass balance, then the LMTD method can be used, whereas when this information is not available the NTU or the effectiveness method is used.

The maximum possible heat transfer which can be hypothetically achieved in a counter flow heat exchanger of infinite length is given by the product of the maximum possible temperature difference

multiplied by the smaller heat capacity rate

The quantity

is the maximum heat which could be transferred between the fluids.

The effectiveness ε

is the ratio between the actual heat transfer rate and the maximum possible heat transfer rate where

The knowledge of e for a particular heat exchanger together with the inlet conditions of the enables us to calculate the amount of heat transferred between the fluids by using

For any heat exchanger it can be shown that

For given geometries, e can be computed using correlations in terms of the heat capacity ratio

and the *number of transfer units, *

where U is the overall heat transfer coefficient and A is the heat transfer area.

The specific equation for the effectiveness of a parallel flow heat exchanger can be written as

while in the special case of condensation or vaporisation C=0 and therefore the effectiveness is given by

*1*. Introductory concepts about batch and continuous precess

*2*. Materials in use for food equipments – Part I

*3*. Materials in use for food equipments – Part II

*4*. Equipment for raw material handling: pneumatic systems - Part I

*5*. Equipment for raw material handling: pneumatic systems - Part ...

*6*. Equipment for raw material handling: pneumatic systems - Part ...

*7*. Equipment for raw material handling: pneumatic systems - Part I...

*8*. Size reduction equipment - Part I

*9*. Size reduction equipments - Part II

*10*. Extruders

*12*. Positive displacement pumps

*14*. Cold Chain Equipment - Part I

*15*. Cold Chain Equipment - Part II

*16*. Cold Chain Equipment - Part III

*17*. Separation equipment - Part I

*18*. Separation Equipments – Part II

*21*. Liquid Mixing

Progetto "Campus Virtuale" dell'Università degli Studi di Napoli Federico II, realizzato con il cofinanziamento dell'Unione europea. Asse V - Società dell'informazione - Obiettivo Operativo 5.1 e-Government ed e-Inclusion