Vai alla Home Page About me Courseware Federica Living Library Federica Federica Podstudio Virtual Campus 3D La Corte in Rete
 
Il Corso Le lezioni del Corso La Cattedra
 
Materiali di approfondimento Risorse Web Il Podcast di questa lezione

Francesco Giannino » 7.Application of differentiation: L'Hospital's Rule


L’Hospital’s Rule

Theorem. (L’Hospital’s Rule, 0/0 form). Suppose f and g are differentiable and g’(x) ≠ 0 on an open interval (a, b) containing c (except possibly at c). Suppose that
\lim_{{x\rightarrow c}}f(x)=0, \,\,\lim_{x\rightarrow c}g(x)= 0 \,\, \text{and}\,\, \lim_{x\rightarrow c}\frac{f'(x)}{g'(x)}= L, $$
where L is a a real number, ∞, or -∞. Then
\lim_{x\rightarrow c}\frac{f(x)}{g(x)}=\lim_{x\rightarrow c}\frac{f'(x)}{g'(x)}= L. $$
Remark. This theorem is valid for one-sided limits as well as the two sided limit.
This theorem is also true if c = ∞,  or c = -∞.

L’Hospital’s Rule

Theorem. (L’Hospital’s Rule, ∞/∞form). The previous theorem is also valid for the case when

\lim_{x\rightarrow c}f(x)= +\infty \,\, \text{or} -\infty ,\,\,\,\text{and}\,\,\lim_{x\rightarrow c}g(x)= +\infty \,\,\text{or} -\infty.$$

Exercises

Exercise 1. Find the following limit using L’Hospital’s Rule
$$ \lim_{x\rightarrow 0}\frac{\sin3x}{\cos5x}.$$
Solution. The assigned function yields the indeterminate form 0/0. We compute this limit applying L’Hospital’s Rule as follows:

\lim_{x\rightarrow 0}\frac{\sin3x}{\sin5x}=\lim_{x\rightarrow 0}\frac{3\cos3x}{5\cos5x}=\frac{3}{5}$$

Exercises

Exercise 2. Find the following limit using L’Hospital’s Rule

\lim_{x\rightarrow 0}\frac{\tan2x}{\tan3x}.$$
Solution. The assigned function yields the indeterminate form 0/0. We compute this limit applying L’Hospital’s Rule as follows:
\lim_{x\rightarrow 0}\frac{\tan2x}{\tan3x}= \lim_{x\rightarrow 0}\frac{2\cos^{2}3x}{3\cos^{2}2x}=\frac{2}{3}$$

Exercises

Exercise 3. Find the following limit using L’Hospital’s Rule

$$ \lim_{x\rightarrow 0}\frac{\sin x}{x}.$$

Solution. The assigned function yields the indeterminate form 0/0. We compute this limit applying L’Hospital’s Rule as follows:
\lim_{x\rightarrow 0}\frac{\sin x}{x}=\lim_{x\rightarrow 0}\frac{\cos x}{1}=1$$

Exercises

Exercise 4. Find the following limit using L’Hospital’s Rule

$$ \lim_{x\rightarrow 0}\frac{1-\cos x}{x}.$$
Solution. The assigned function yields the indeterminate form 0/0. We compute this limit applying L’Hospital’s Rule as follows:
\lim_{x\rightarrow 0}\frac{1-\cos x}{x}=\lim_{x\rightarrow 0}\frac{\sin x}{1} = 0

Exercises

Exercise 5. Find the following limit using L’Hospital’s Rule

$$ \lim_{x\rightarrow 0}\frac{1-\cos x}{x^{2}}.$$
Solution. The assigned function yields the indeterminate form 0/0. We compute this limit applying L’Hospital’s Rule as follows:
\lim_{x\rightarrow 0}\frac{1-\cos x}{x^{2}}=\lim_{x\rightarrow 0}\frac{\sin x}{2x} = [\frac{0}{0}]$$
Applying again L’Hospital’s Rule we have:
=\lim_{x\rightarrow 0}\frac{\cos x}{2} = \frac{1}{2}

Exercises

Exercise 6. Find the following limit using L’Hospital’s Rule

$$\lim_{x\rightarrow +\infty}\frac{\exp x}{x^{2}}$$
Solution. The assigned function yields the indeterminate form ∞/∞. We compute this limit applying L’Hospital’s Rule as follows:
\lim_{x\rightarrow +\infty}\frac{\exp x}{x^{2}}= \lim_{x\rightarrow +\infty}\frac{\exp x}{2x}= [\frac{+\infty}{+\infty}]$$
Applying again L’Hospital’s Rule we have:
$$=\lim_{x\rightarrow +\infty}\frac{\exp x}{2}= +\infty$$

Exercises

Exercise 7. Find the following limit using L’Hospital’s Rule

$$ \lim_{x\rightarrow 0}x\ln x.$$
Solution. The assigned function yields the indeterminate form 0·∞ when x tends to 0. Then, before applying L’Hospital’s Rule, we have to rig the assigned function to make an indeterminate quotient as follows: $$ f(x)=x\ln x=\frac{\ln x}{\frac{1}{x}}$$
and the limit becomes: \lim_{x\rightarrow 0}\frac{\ln x}{\frac{1}{x}}

Exercises

Now this limit yields the indeterminate form ∞ /∞ when x tends to 0. Then, we compute this limit applying L’Hospital’s Rule as follows:
$$ \lim_{x\rightarrow 0}\frac{\ln x}{\frac{1}{x}}=\lim_{x\rightarrow 0}\frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim_{x\rightarrow 0}\frac{1}{x}\cdot(-x^{2})=$$

$$=\lim_{x\rightarrow 0}(-x)=0.$$

Exercises

Exercise 8. Find the following limit using L’Hospital’s Rule

$$ \lim_{x\rightarrow 0^{+}}(\frac{1}{x}-\frac{\cos 2x}{\sin 2x}).$$

Solution. The assigned function yields the indeterminate form ∞ – ∞ when x tends to 0. Then, before applying L’Hospital’s Rule, we have to rig the assigned function to make an indeterminate quotient as follows:

$$ f(x)=\frac{1}{x}-\frac{\cos 2x}{\sin 2x}=\frac{\sin 2x-x\cos 2x}{x\sin 2x}$$

and the limit becomes: \lim_{x\rightarrow 0^{+}}\frac{\sin 2x-x\cos 2x}{x\sin 2x}

Exercises

Now this limit yields the indeterminate form 0/0 when x tends to 0. Then, we compute this limit applying L’Hospital’s Rule as follows:
\lim_{x\rightarrow 0^{+}}\frac{\sin 2x-x\cos 2x}{x\sin 2x}=\lim_{x\rightarrow 0^{+}}\frac{2\cos 2x-\cos 2x + 2x\sin 2x}{\sin 2x + 2x\cos 2x}=$$
$$=\lim_{x\rightarrow 0^{+}}\frac{\cos 2x + 2x\sin 2x}{\sin 2x + 2x\cos 2x}=[\frac{0}{0}]$$
Applying again L’Hospital’s Rule we have:
=\lim_{x\rightarrow 0^{+}}\frac{-2\sin 2x + 2\sin 2x + 4x\cos 2x}{2\cos 2x + 2\cos 2x - 4x\sin 2x}=
$$=\lim_{x\rightarrow 0^{+}}\frac{4x\cos 2x}{4\cos 2x - 4x\sin 2x}= \frac{0}{1}= 0. $$

Exercises

Exercise 9. Find the following limit using L’Hospital’s Rule

$$ \lim_{x\rightarrow 0^{+}}(1-2x)^{\frac{1}{x}}.$$

Solution. The assigned function yields the indeterminate form 1 when x tends to 0+. Then, before applying L’Hospital’s Rule, we have to rig the assigned function to make an indeterminate quotient as follows:

f(x)=(1-2x)^{\frac{1}{x}}=\exp(\ln(1-2x)^{\frac{1}{x}})

and the limit becomes: \lim_{x\rightarrow 0^{+}}\exp(\ln(1-2x)^{\frac{1}{x}})=
$=\exp(\lim_{x\rightarrow 0^{+}}\ln(1-2x)^{\frac{1}{x}}) =\exp(\lim_{x\rightarrow 0^{+}}\frac{1}{x}\ln(1-2x))

Exercises

where  \lim_{x\rightarrow 0^{+}}\frac{1}{x}\ln(1-2x))=[\frac{0}{0}].

Now this limit yields the indeterminate form 0/0 when x tends to 0. So, we can compute this limit applying L’Hospital’s Rule as follows:
where
$$\exp(\lim_{x\rightarrow 0^{+}}\frac{1}{x}\ln(1-2x))=\exp(\lim_{x\rightarrow 0^{+}}\frac{\frac{-2}{1-2x}}{1})=
=\exp (-2)

  • Contenuti protetti da Creative Commons
  • Feed RSS
  • Condividi su FriendFeed
  • Condividi su Facebook
  • Segnala su Twitter
  • Condividi su LinkedIn
Progetto "Campus Virtuale" dell'Università degli Studi di Napoli Federico II, realizzato con il cofinanziamento dell'Unione europea. Asse V - Società dell'informazione - Obiettivo Operativo 5.1 e-Government ed e-Inclusion

Fatal error: Call to undefined function federicaDebug() in /usr/local/apache/htdocs/html/footer.php on line 93