Vai alla Home Page About me Courseware Federica Living Library Federica Federica Podstudio Virtual Campus 3D Le Miniguide all'orientamento Gli eBook di Federica La Corte in Rete
 
 
Il Corso Le lezioni del Corso La Cattedra
 
Materiali di approfondimento Risorse Web Il Podcast di questa lezione

Giovanni Maria Carlomagno » 25.Rayleigh - parte terza


Condotto con scambio termico collegato ad un ugello convergente divergente

Un condotto alla Rayleigh collegato ad un ugello convergente divergente, sottoposto a un flusso di energia nel modo calore positivo, si comporta in modo simile a quello descritto per il moto alla Fanno e in figura si riportano le curve caratteristiche.
Nei punti C, Y e X del diagramma in basso sono visibili i tre rapporti critici di pressione del solo ugello convergente divergente r1, r2 e r3.
La sostanziale differenza con il moto alla Fanno è che, anche per moto strozzato, al variare delle condizioni di funzionamento nell’ugello convergente divergente, bisogna tener conto del fatto che all’uscita dell’ugello (all’ingresso del condotto) varia l’impulso specifico I per cui la curva di Rayleigh lungo la quale il fluido evolve cambia anch’essa.


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)

Ad ogni punto di funzionamento all’uscita dell’ugello strozzato, corrisponde in generale una diversa curva di Rayleigh e, in particolare, al diminuire della pressione di uscita dal rapporto r1 al rapporto r2 (dal punto C al punto Y) l’impulso specifico diminuisce e le curve di Rayleigh (che hanno tutte lo stesso flusso di massa G) sono sempre più interne.
Così come mostrato in precedenza, anche la pressione critica diminuisce.
Attenzione: Nel caso del sistema descritto al paragrafo precedente, la variazione della curva di Rayleigh è associata ad una simultanea variazione di G ed I e la pressione critica aumenta man mano che la curva diventa sempre più interna.


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)

Come nel caso di moto alla Fanno, quando il regime di moto nell’ugello è alla Venturi (curve a), il funzionamento è analogo a quello descritto in precedenza per l’ugello semplicemente convergente.
Occorre ricordare che, al diminuire della lunghezza del condotto (della quantità di calore q), la pressione critica tende debolmente ad aumentare.
Questo comportamento si ha fino a che la lunghezza del condotto non risulta esattamente uguale a quella per la quale si hanno le condizioni critiche anche nella sezione di gola dell’ugello (punto Q).
Per successive diminuzioni di q, di nuovo le curve di funzionamento sono analoghe a quelle già viste per il moto alla Fanno con onda d’urto nel divergente dell’ugello, ma con una progressiva diminuzione della pressione critica.


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)

Infatti, il diminuire di q dal valore relativo al punto Q a quello relativo al punto O provoca una continua diminuzione dell’impulso specifico nella sezione di uscita dell’ugello e cioè uno spostamento su curve di Rayleigh sempre più interne.

Quando, però, la lunghezza del condotto (la quantità di calore q) è esattamente uguale a quella corrispondente al punto O, è chiaro che il regime di funzionamento caratteristico del sistema risulta indeterminato perché al punto O si può pervenire sia seguendo la curva d (XYNO), che seguendo la curva e (XJO).

Inoltre, anche una qualunque curva del tipo f (XJNO) continua ad essere soluzione del problema.


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)

Per dimostrare che la quantità di calore critica per il caso corrispondente al rapporto di pressione r3 è uguale a quella che si ha con il funzionamento con onda d’urto all’uscita dell’ugello (rapporto r2), o in qualsiasi sezione del condotto, si può procedere nello stesso modo già discusso in precedenza per il caso in cui il fluido è raffreddato.
Se, in particolare, si suppone che l’onda d’urto si trova all’uscita dell’ugello, la temperatura di ristagno del fluido rimane invariata nel passare dallo stato a monte a quello a valle dell’onda, quindi la massima quantità di calore scambiabile seguendo la curva d, o quella seguendo la curva e, risulta la stessa. Infatti, per la:

\frac{T_{02}}{T_{01}}-1=4\frac{\dot q}{c_pT_{01}G}\frac{L_{12}}{D_e}=\frac q {c_pT_{01}}

applicata fra la sezione iniziale e quella critica, la lunghezza critica sarà la stessa.


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)

Lo stesso ragionamento è valido anche per un’onda d’urto ovunque posizionata all’interno del condotto. Quindi, se il punto all’uscita del condotto, definito dalla quantità di calore ceduta al fluido e dalla pressione ambiente, coincide con il punto O, un’onda d’urto nel condotto alla Rayleigh è metastabile.
Bisogna esplicitamente notare che solo in queste condizioni può essere presente un’onda d’urto nel condotto.
Infatti, se la pressione ambiente (rispettivamente, la quantità di calore) fosse leggermente maggiore, a parità di quantità di calore (rispettivamente, di pressione ambiente), l’onda si troverebbe nella parte divergente dell’ugello.
Ovviamente per pressioni ambiente inferiori, le condizioni all’uscita resterebbero bloccate a quelle del punto O per cui l’incertezza del funzionamento rimarrebbe.


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)

Per quantità di calore inferiori a quella corrispondente al punto O, ad es. quella relativa ai punti J, o N, il comportamento del sistema risulta più articolato.
Per valori della pressione ambiente inferiori a quello del punto J, il condotto scarica nelle condizioni relative al punto J e si ha un ventaglio di espansione nella sezione di uscita.
Per valori della pa compresi tra quelli dei punti J e N, si ha un’onda d’urto obliqua all’uscita del condotto e in particolare un’onda di Mach per il punto J che, man mano che la pressione pa sale, diventa sempre più normale alla corrente.
Per pa = pN , sono possibili sia le evoluzioni del fluido lungo le curve BXYN e BXJN, che quelle che prevedono un’onda d’urto normale ovunque posizionata nel condotto tra X e J.


Condotto con scambio termico collegato ad un ugello convergente divergente (segue)

Man mano che la pressione ambiente sale a partire dal valore pN , l’onda d’urto risale il divergente dell’ugello sino a diventare un’onda di Mach posizionata in gola.

Per pressioni ambiente ancora maggiori, l’ugello segue un comportamento alla Venturi.


  • Contenuti protetti da Creative Commons
  • Feed RSS
  • Condividi su FriendFeed
  • Condividi su Facebook
  • Segnala su Twitter
  • Condividi su LinkedIn
Progetto "Campus Virtuale" dell'Università degli Studi di Napoli Federico II, realizzato con il cofinanziamento dell'Unione europea. Asse V - Società dell'informazione - Obiettivo Operativo 5.1 e-Government ed e-Inclusion