Vai alla Home Page About me Courseware Federica Living Library Federica Federica Podstudio Virtual Campus 3D Le Miniguide all'orientamento Gli eBook di Federica La Corte in Rete
 
I corsi di Scienze Politiche
 
Il Corso Le lezioni del Corso La Cattedra
 
Materiali di approfondimento Risorse Web Il Podcast di questa lezione

Carmela Cappelli » 1.Introduzione al corso: cenni storici, definizioni alternative, impostazione assiomatica


Cenni storici

Il CALCOLO DELLE PROBABILITÀ è una disciplina relativamente recente, primi accenni ad una formalizzazione risalgono alla metà del XVII secolo quando il cavaliere di Méré amico di Pascal ed accanito giocatore d’azzardo gli pose dei quesiti. Per risolvere tali problemi Pascal si consultò con Fermat e ne nacque una famosa corrispondenza epistolare nel corso della quale i due famosi matematici scoprirono le prime leggi della probabilità e inventarono il calcolo combinatorio.

Per contro invece la PROBABILITÀ in quanto tale è un concetto primitivo, ovvero innato nell’uomo e sempre presente nelle sue regole di comportamento. Si pensi ad esempio ai giochi d’alea che sono antichissimi.

L’esperimento probabilistico

Nel corso del tempo sono state proposte svariate nozioni di probabilità che danno luogo ad impostazioni alternative ai fini del suo calcolo.
Allo scopo di illustrare tali nozioni alternative ricordiamo che si definisce:

  • esperimento probabilistico un qualsiasi esperimento il cui esito non può essere previsto con certezza (ES: LANCIO DI UN DADO)
  • evento (denotato con E) uno dei possibili risultati dell’esperimento probabilistico (ES: USCITA DELLA FACCIA RECANTE IL NUMERO 2)

Accanto all’incertezza del risultato che deve essere sempre presente, vi sono due ulteriori aspetti che possono caratterizzare o meno l’esperimento probabilistico:

  • Ripetibilità dell’esperimento;
  • Equiprobabilità dei risultati.

Definizione classica

Secondo la scuola classica:
la probabilità di un evento E è il rapporto tra il numero dei casi favorevoli al verificarsi di A ed il numero di casi possibili posto che questi siano tutti ugualmente possibili, quindi:
Pr(E)=\frac{m}{n}

Dove m rappresenta il numero di casi favorevoli al verificarsi dell’evento E ed n quello di casi possibili.

Tale definizione è “operativa” poichè fornisce un criterio immediato per il calcolo della probabilità ma non è sempre applicabile poiché postula la equiprobabilità dei risultati ed è tautologica poichè per definire la probabilità utilizza il termine equipossibili che è sinonimo di equiprobabile.

Definizione frequentista

Secondo la scuola frequentista:
Dato un esperimento ripetibile ed un evento e tra quelli possibili, la probabilità di E è data dal limite cui tende la frequenza relativa con cui l’evento E si verifica quando il numero n delle prove tende ad infinito:

Pr(E)=\lim_{n\rightarrow \infty} \frac{fr(E)}{n}

Tale definizione che muove dalla cd Legge Empirica del Caso è anch’essa operativa, tuttavia presenta un inconveniente concettuale poiché mette in relazione la frequenza di un evento misurata empiricamente a posteriori con la probabilità che esiste a-priori ed un inconveniente pratico poiché postula la ripetibilità dell’esperimento.

Definizione soggettivista

Secondo la scuola soggettivista:
la probabilità di un evento E è la somma che un individuo coerente è disposto a pagare in un gioco equo per ricevere un importo unitario in caso di vincita e zero in caso di perdita.

La equità del gioco risiede nel fatto che esso non deve dare luogo né ad una vincita certa né ad una perdita certa.
La coerenza discende dall’equità: essendo il gioco equo deve essere indifferente la assunzione di posizioni contrapposte.
Tale definizione che discende dalla legge empirica del caso, presenta il vantaggio di prescindere dalla equiprobabilità dei risultati e dalla ripetibilità dell’esperimento, tuttavia essa non è operativa.

Metodo classico esempio

Se un esperimento dà luogo ad n possibili risultati equiprobabili, secondo la definizione classica ciascuno ha probabilità pari ed 1/n di verificarsi.

Esempio: lancio di un dado regolare.
Possibili risultati: uscita delle facce recanti i numeri 1, 2, 3, 4, 5, 6
Ogni faccia del dado ha probabilità Pr (E)= 1/6 di verificarsi

Se invece l’evento di interesse è l’uscita di un numero pari allora il numero di casi favorevoli è m=3 e quindi Pr(E)=3/6= 0.5.

Metodo frequentista esempio

Un pasticciere vuole assegnare una probabilità alla quantità di brioche che vende ogni giorno. Basandosi sulle vendite degli ultimi 30 giorni compila la tabella in figura.

Il nostro pasticciere attribuisce le probabilità mediante le frequenze relative applicando la definizione frequentista. Ovviamente la qualità della approssimazione migliora all’aumentare del numero delle prove.


Impostazione assiomatica

La validità di ciascuna definizione di probabilità nei limiti che ognuna di esse postula mette in luce come la probabilità, in quanto concetto primitivo, non è definibile. Da tale constatazione prende le mosse la cd impostazione assiomatica al calcolo delle probabilità che rinuncia a fornirne una definizione ma la fa discendere dalla:

  1. Individuazione dei concetti primitivi;
  2. Enunciazione dei postulati;
  3. Dimostrazione dei teoremi.

Concetti primitivi

I concetti primitivi sono ben sintetizzati dalla celebre frase di Pompilj:

“La prova genera l’evento con una certa probabilità”

  • Prova è sinonimo di esperimento probabilistico, ovvero esperimento soggetto ad incertezza;
  • Evento è ciascun possibile risultato della prova;
  • Probabilità è un numero associato al verificarsi dell’evento.

Algebra degli eventi

Avendo definito la probabilità come una misura ovvero una valutazione numerica, allo scopo
di svolgere calcoli sulla probabilità degli eventi, occorre disporre di una struttura di calcolo sugli eventi stessi che consenta di metterli in relazione e quindi di mettere in relazione le loro rispettive probabilità.
La formalizzazione di tale struttura si fonda sul seguente postulato:
Gli eventi formano un’ Algebra di Boole completa.

Le operazioni che definiscono l’algebra sono:

  • UNIONE: dati due eventi A e B si definisce UNIONE e la si denota con A\cup B l’evento che si verifica se si verifica A oppure B oppure entrambi;
  • NEGAZIONE: dato un vento A si definisce NEGAZIONE di A e lo si denota con \bar A l’evento che si verifica quando non si verifica A;
  • INTERSEZIONE: dati due eventi A e B si definisce INTERSEZIONE e la si denota conA\cAp B l’evento che si verifica se si verificano contemporaneamente A e B.

Le leggi di De Morgan

Le leggi di De Morgan mettono in relazione le operazioni tra gli eventi:

  1. \overline{A \cap B}= \bar A \cup \bar B
  2. \overline{A \cup B}= \bar A \cap \bar B

Tali leggi quindi stabiliscono che la negazione della intersezione tra due eventi è l’unione delle rispettive negazioni e, in maniera duale, che la negazione della unione tra due eventi è l’intersezione delle rispettive negazioni. Esse si possono generalizzare ad un numero qualsiasi di unioni ed intersezioni ed anche una infinità numerabile.

Diagrammi di Venn

Gli eventi e le relazioni tra essi possono essere rappresentati graficamente mediante i Diagrammi di Venn.
Siccome lo spazio campione \Omega rappresenta la totalità dei possibili risultati della prova, esso viene rappresentato mediante una figura geometrica chiusa (tipicamente un rettangolo) all’interno della quale si collocano altre figure chiuse che rappresentano gli eventi.

Diagrammi di Venn e le relazioni basilari tra eventi.

Diagrammi di Venn e le relazioni basilari tra eventi.


Eventi elementari e composti

Avendo introdotto l’unione tra eventi è possibile ed opportuno distinguere tra eventi elementari ed eventi composti:

  • L’evento elementare non può essere espresso come la unione di altri eventi;
  • L’evento composto è invece la unione di più eventi elementari.

Pertanto, l’affermazione: “l’evento E si è verificato” sta a significare che si è verificato almeno uno degli eventi elementari di cui E è composto e ciò è molto rilevante ai fini del calcolo della probabilità di eventi composti.

  • Contenuti protetti da Creative Commons
  • Feed RSS
  • Condividi su FriendFeed
  • Condividi su Facebook
  • Segnala su Twitter
  • Condividi su LinkedIn
Progetto "Campus Virtuale" dell'Università degli Studi di Napoli Federico II, realizzato con il cofinanziamento dell'Unione europea. Asse V - Società dell'informazione - Obiettivo Operativo 5.1 e-Government ed e-Inclusion